JAVA常见算法
1、二分查找
算法描述
前提:有已排序数组 A(假设已经做好)
定义左边界 L、右边界 R,确定搜索范围,循环执行二分查找(3、4两步)
获取中间索引 M = Floor((L+R) /2)
中间索引的值 A[M] 与待搜索的值 T 进行比较
① A[M] == T 表示找到,返回中间索引
② A[M] > T,中间值右侧的其它元素都大于 T,无需比较,中间索引左边去找,M - 1 设置为右边界,重新查找
③ A[M] < T,中间值左侧的其它元素都小于 T,无需比较,中间索引右边去找, M + 1 设置为左边界,重新查找
当 L > R 时,表示没有找到,应结束循环
算法实现
public static int binarySearch(int[] a, int t) {
int l = 0, r = a.length - 1, m;
while (l <= r) {
m = (l + r) / 2;
if (a[m] == t) {
return m;
} else if (a[m] > t) {
r = m - 1;
} else {
l = m + 1;
}
}
return -1;
}
测试代码
public static void main(String[] args) {
int[] array = {1, 5, 8, 11, 19, 22, 31, 35, 40, 45, 48, 49, 50};
int target = 47;
int idx = binarySearch(array, target);
System.out.println(idx);
}
解决整数溢出问题
当 l 和 r 都较大时,l + r
有可能超过整数范围,造成运算错误,解决方法有两种:
int m = l + (r - l) / 2;
还有一种是:
int m = (l + r) >>> 1;
2、冒泡排序
- 依次比较数组中相邻两个元素大小,若 a[j] > a[j+1],则交换两个元素,两两都比较一遍称为一轮冒泡,结果是让最大的元素排至最后
- 重复以上步骤,直到整个数组有序
算法实现
public static void bubble(int[] a) {
for (int j = 0; j < a.length - 1; j++) {
// 一轮冒泡
boolean swapped = false; // 是否发生了交换
for (int i = 0; i < a.length - 1 - j; i++) {
System.out.println("比较次数" + i);
if (a[i] > a[i + 1]) {
Utils.swap(a, i, i + 1);
swapped = true;
}
}
System.out.println("第" + j + "轮冒泡"
+ Arrays.toString(a));
if (!swapped) {
break;
}
}
}
- 优化点1:每经过一轮冒泡,内层循环就可以减少一次
- 优化点2:如果某一轮冒泡没有发生交换,则表示所有数据有序,可以结束外层循环
进一步优化
public static void bubble_v2(int[] a) {
int n = a.length - 1;
while (true) {
int last = 0; // 表示最后一次交换索引位置
for (int i = 0; i < n; i++) {
System.out.println("比较次数" + i);
if (a[i] > a[i + 1]) {
Utils.swap(a, i, i + 1);
last = i;
}
}
n = last;
System.out.println("第轮冒泡"
+ Arrays.toString(a));
if (n == 0) {
break;
}
}
}
- 每轮冒泡时,最后一次交换索引可以作为下一轮冒泡的比较次数,如果这个值为零,表示整个数组有序,直接退出外层循环即可
3、选择排序
将数组分为两个子集,排序的和未排序的,每一轮从未排序的子集中选出最小的元素,放入排序子集
重复以上步骤,直到整个数组有序
算法实现
public static void selection(int[] a) {
for (int i = 0; i < a.length - 1; i++) {
// i 代表每轮选择最小元素要交换到的目标索引
int s = i; // 代表最小元素的索引
for (int j = s + 1; j < a.length; j++) {
if (a[s] > a[j]) { // j 元素比 s 元素还要小, 更新 s
s = j;
}
}
if (s != i) {
swap(a, s, i);
}
System.out.println(Arrays.toString(a));
}
}
- 优化点:为减少交换次数,每一轮可以先找最小的索引,在每轮最后再交换元素
与冒泡排序比较
二者平均时间复杂度都是 $O(n^2)$
选择排序一般要快于冒泡,因为其交换次数少
但如果集合有序度高,冒泡优于选择
冒泡属于稳定排序算法,而选择属于不稳定排序
- 稳定排序指,按对象中不同字段进行多次排序,不会打乱同值元素的顺序
- 不稳定排序则反之
稳定排序与不稳定排序
System.out.println("=================不稳定================");
Card[] cards = getStaticCards();
System.out.println(Arrays.toString(cards));
selection(cards, Comparator.comparingInt((Card a) -> a.sharpOrder).reversed());
System.out.println(Arrays.toString(cards));
selection(cards, Comparator.comparingInt((Card a) -> a.numberOrder).reversed());
System.out.println(Arrays.toString(cards));
System.out.println("=================稳定=================");
cards = getStaticCards();
System.out.println(Arrays.toString(cards));
bubble(cards, Comparator.comparingInt((Card a) -> a.sharpOrder).reversed());
System.out.println(Arrays.toString(cards));
bubble(cards, Comparator.comparingInt((Card a) -> a.numberOrder).reversed());
System.out.println(Arrays.toString(cards));
都是先按照花色排序(♠♥♣♦),再按照数字排序(AKQJ...)
不稳定排序算法按数字排序时,会打乱原本同值的花色顺序
[[♠7], [♠2], [♠4], [♠5], [♥2], [♥5]] [[♠7], [♠5], [♥5], [♠4], [♥2], [♠2]]
原来 ♠2 在前 ♥2 在后,按数字再排后,他俩的位置变了
稳定排序算法按数字排序时,会保留原本同值的花色顺序,如下所示 ♠2 与 ♥2 的相对位置不变
[[♠7], [♠2], [♠4], [♠5], [♥2], [♥5]] [[♠7], [♠5], [♥5], [♠4], [♠2], [♥2]]
4、插入排序
将数组分为两个区域,排序区域和未排序区域,每一轮从未排序区域中取出第一个元素,插入到排序区域(需保证顺序)
重复以上步骤,直到整个数组有序
算法实现
// 修改了代码与希尔排序一致
public static void insert(int[] a) {
// i 代表待插入元素的索引
for (int i = 1; i < a.length; i++) {
int t = a[i]; // 代表待插入的元素值
int j = i;
System.out.println(j);
while (j >= 1) {
if (t < a[j - 1]) { // j-1 是上一个元素索引,如果 > t,后移
a[j] = a[j - 1];
j--;
} else { // 如果 j-1 已经 <= t, 则 j 就是插入位置
break;
}
}
a[j] = t;
System.out.println(Arrays.toString(a) + " " + j);
}
}
与选择排序比较
二者平均时间复杂度都是 $O(n^2)$
大部分情况下,插入都略优于选择
有序集合插入的时间复杂度为 $O(n)$
插入属于稳定排序算法,而选择属于不稳定排序
提示
插入排序通常被轻视,其实它的地位非常重要。小数据量排序,都会优先选择插入排序
5、希尔排序
首先选取一个间隙序列,如 (n/2,n/4 … 1),n 为数组长度
每一轮将间隙相等的元素视为一组,对组内元素进行插入排序,目的有二
① 少量元素插入排序速度很快
② 让组内值较大的元素更快地移动到后方
当间隙逐渐减少,直至为 1 时,即可完成排序
算法实现
private static void shell(int[] a) {
int n = a.length;
for (int gap = n / 2; gap > 0; gap /= 2) {
// i 代表待插入元素的索引
for (int i = gap; i < n; i++) {
int t = a[i]; // 代表待插入的元素值
int j = i;
while (j >= gap) {
// 每次与上一个间隙为 gap 的元素进行插入排序
if (t < a[j - gap]) { // j-gap 是上一个元素索引,如果 > t,后移
a[j] = a[j - gap];
j -= gap;
} else { // 如果 j-1 已经 <= t, 则 j 就是插入位置
break;
}
}
a[j] = t;
System.out.println(Arrays.toString(a) + " gap:" + gap);
}
}
}
参考资料
6、快速排序
- 每一轮排序选择一个基准点(pivot)进行分区
- 让小于基准点的元素的进入一个分区,大于基准点的元素的进入另一个分区
- 当分区完成时,基准点元素的位置就是其最终位置
- 在子分区内重复以上过程,直至子分区元素个数少于等于 1,这体现的是分而治之的思想 (divide-and-conquer)
- 从以上描述可以看出,一个关键在于分区算法,常见的有洛穆托分区方案、双边循环分区方案、霍尔分区方案
单边循环快排(lomuto 洛穆托分区方案)**
选择最右元素作为基准点元素
j 指针负责找到比基准点小的元素,一旦找到则与 i 进行交换
i 指针维护小于基准点元素的边界,也是每次交换的目标索引
最后基准点与 i 交换,i 即为分区位置
public static void quick(int[] a, int l, int h) {
if (l >= h) {
return;
}
int p = partition(a, l, h); // p 索引值
quick(a, l, p - 1); // 左边分区的范围确定
quick(a, p + 1, h); // 左边分区的范围确定
}
private static int partition(int[] a, int l, int h) {
int pv = a[h]; // 基准点元素
int i = l;
for (int j = l; j < h; j++) {
if (a[j] < pv) {
if (i != j) {
swap(a, i, j);
}
i++;
}
}
if (i != h) {
swap(a, h, i);
}
System.out.println(Arrays.toString(a) + " i=" + i);
// 返回值代表了基准点元素所在的正确索引,用它确定下一轮分区的边界
return i;
}
双边循环快排(不完全等价于 hoare 霍尔分区方案)
- 选择最左元素作为基准点元素
- j 指针负责从右向左找比基准点小的元素,i 指针负责从左向右找比基准点大的元素,一旦找到二者交换,直至 i,j 相交
- 最后基准点与 i(此时 i 与 j 相等)交换,i 即为分区位置
要点
基准点在左边,并且要先 j 后 i
while( i < j && a[j] > pv ) j--
while ( i < j && a[i] <= pv ) i++
private static void quick(int[] a, int l, int h) {
if (l >= h) {
return;
}
int p = partition(a, l, h);
quick(a, l, p - 1);
quick(a, p + 1, h);
}
private static int partition(int[] a, int l, int h) {
int pv = a[l];
int i = l;
int j = h;
while (i < j) {
// j 从右找小的
while (i < j && a[j] > pv) {
j--;
}
// i 从左找大的
while (i < j && a[i] <= pv) {
i++;
}
swap(a, i, j);
}
swap(a, l, j);
System.out.println(Arrays.toString(a) + " j=" + j);
return j;
}
快排特点
平均时间复杂度是 $O(nlog_2n )$,最坏时间复杂度 $O(n^2)$
数据量较大时,优势非常明显
属于不稳定排序
洛穆托分区方案 vs 霍尔分区方案
- 霍尔的移动次数平均来讲比洛穆托少3倍
- https://qastack.cn/cs/11458/quicksort-partitioning-hoare-vs-lomuto
import java.util.Random;
public class Utils {
public static void swap(int[] array, int i, int j) {
int t = array[i];
array[i] = array[j];
array[j] = t;
}
public static void shuffle(int[] array) {
Random rnd = new Random();
int size = array.length;
for (int i = size; i > 1; i--) {
swap(array, i - 1, rnd.nextInt(i));
}
}
public static int[] randomArray(int n) {
int lastVal = 1;
Random r = new Random();
int[] array = new int[n];
for (int i = 0; i < n; i++) {
int v = lastVal + Math.max(r.nextInt(10), 1);
array[i] = v;
lastVal = v;
}
shuffle(array);
return array;
}
public static int[] evenArray(int n) {
int[] array = new int[n];
for (int i = 0; i < n; i++) {
array[i] = i * 2;
}
return array;
}
public static int[] sixteenArray(int n) {
int[] array = new int[n];
for (int i = 0; i < n; i++) {
array[i] = i * 16;
}
return array;
}
public static int[] lowSameArray(int n) {
int[] array = new int[n];
Random r = new Random();
for (int i = 0; i < n; i++) {
array[i] = r.nextInt() & 0x7FFF0002;
}
return array;
}
}